quarta-feira, 18 de maio de 2016

Medidas de disperção

São medidas estatísticas utilizadas para avaliar a variabilidade, ou dispersão, dos valores em torno da média, servindo assim, para medir a sua representatividade. As medidas de dispersão mais importantes são o desvio médio, a variância e o desvio-padrão.



        Desvio médio

O desvio médio representa a média dos desvios de um conjunto de dados sem consideração do sinal que o acompanha. Sua fórmula básica é representada por:


Por exemplo, tomando x como um número igual a 3,00e os valores de e como:
2,00
3,00
4,00
Total N
1,00
2,00
1,00
4,00
Aplicando os dados à fórmula teríamos o seguinte desvio médio:


        Variância

Mede a variação de dispersão das observações em torno da sua média aritmética. São duas fórmulas básicas para a obtenção da variância, uma para a amostra e outra para a população.
Para uma amostra utiliza-se a seguinte equação:


E para uma população a equação a ser utilizada é:

        Desvio-padrão

Enquanto que a variância mede a variação das observações ao redor da média, o desvio-padrão mede a dispersão absoluta em termos das unidades originais. Da mesma forma que a variância tem equações para amostras e para populações, a saber:
Equação utilizada em um estudo de uma amostra:

Que detalhada é

E a equação geral para utilização em uma população:

Que detalhada é


        Coeficiente de variação

É a razão entre a dispersão absoluta e a sua média aritmética. Com esta razão temos então a dispersão relativa, chamada de coeficiente de variação. Enquanto que na amplitude total, a variância e o desvio-padrão são medidas absolutas de dispersão o Coeficiente de Variação É usado para medir a dispersão relativa. O coeficiente de variação representa a qualidade da amostra. Quanto menor o coeficiente, melhor é a amostra. Assim apresentamos a equação do coeficiente de variação, que tem como resultado um índice em porcentagem:


Ficam aqui algumas dicas empíricas para as interpretações do coeficiente de variação, mas vale lembrar que não são regras, uma vez que nem sempre ocorrem desta forma:
  • Se , há baixa dispersão;
  • Se , há média dispersão e;
  • Se , há alta dispersão.